

From Noachian to Amazonian, Clays, Sediments and Igneous Rocks in Oxia

SEEKING SIGNES OF PAST LIFE

COMPUTE BLACKOUP
MINITUS SCIENCE

COMPUTE BLA

Planur Mars 2020 Rover

P. Thollot¹, C. Quantin¹, J. Carter², et al.

including work by: L. Lozach¹, J. Davis³, P. Grindrod³, J. Fernando¹, D. Loizeau¹ M. Pajola⁴, J. Broyer¹, E. Baratti⁵, R. Sandro⁴, P. Allemand¹, B. Bultel¹, C. Leyrat⁶, A. Ody¹

(1) Laboratoire de Géologie de Lyon, France. (2) IAS, France. (3) University college london (UK).(4) University of Padova, Italia. (5) University of Bologna, Italia. (6) OPM

Oxia Planum Highlights

- 1. Noachian basement (4 Ga), layered (sedimentary or igneous) and altered
- 2. Fluvial valleys and channels on Noachian basement
- 3. Delta-fan likely IN/eH (3.8-3.6 Ga), synchronous with fluvial features
- 4. Fe/Mg-phyllosilicates (ferrous iron: Fe2+) in late noachian unit.
- 5. Other alteration minerals include Al-phyllosilicates in delta-fan, hydrated silica on edge of igneous unit, possible carbonates with Fe/Mg-clays.
- 6. Early Amazonian lava flow unit (~ 2.6 Ga): igneous unit with crater count and precise age.
- 7. Continuing erosion during Amazonian: renewing of surface outcrops and renewing of potential biosignatures.
- 8. Impact craters forming natural cross-sections, also secondaries from large nearby craters.

Oxia Planum: location

1. Noachian basement

Mostly plains forming, rugged in places. May be hundreds of meters thick. (lat –20.74° N., long 354.35°

Occurs commonly in highland depressions, as well as sparsely in higher-elevation parts of the lowlands. Superposes units minn, minn, einn, and einnm;

Undifferentiated impact, volcanic, fluvial, and basin material. Lightly to heavily degraded and (or) deformed

Middle Noachian highland unit-

Uneven to rolling topography; high-relief outcrops that extend hundreds to thousands of kilometers. Commonly layered in crater walls. May be hundreds of meters to more than a kilometer thick. Extensive in the equatorial to southern highlands. Superposes units eNh and eNhm; gradational with units mNhm,

Nhu, Nhe, Nve, and HNt and ANa (Noachian parts); overlain by units INh, INv, HNt (Hesperian part), HNhu, HNb, eHb, eHv, eHh, eHt, Hp, Ht, Hto, Htu, Undifferentiated impact, volcanic, fluvial, and basin materials. Moderately to heavily degraded

1. Noachian basement: age

Crater counts on Oxia-Mawrth region

- Oxia-Mawrth Region basement is ancient: 4 Ga (+/- 200 Ma)
- Intense crater obliteration from 4 Ga to 3.6 Ga: geologically active
- Moderate but continuous erosion since 3.6 Ga

1. Noachian basement: ancient volcanism

1. Noachian basement: layered

(8.) Impact craters walls inside ellipse expose basement outcrops

2. Regional fluvial morphology (IN): valleys & channels

2./3. Delta-fan in paleo-basin as main target (with inlets and outlet)

2. Fluvial morphology details: valleys & channels

3. Delta-fan in paleo-basin as main target 10s of meters thick, stratigraphy exposed

3. Delta-fan in paleo-basin as main target 10s of meters thick, stratigraphy exposed

3. Delta-fan in paleo-basin as main target

Age from crater counts: > 3 Ga
Undergoing erosion

4. Fe/Mg-phyllosilicates (Fe²⁺) in noachian basement. Prob. late Noachian alteration; typical « Phyllosian » clays

4. Fe/Mg-phyllosilicates (Fe²⁺) in Noachian basement. Alteration of Noachian units spans 100s of km

OMEGA & CRISM MSP:

2.3 microns band, Fe/Mg-Phyllosilicates

4. Fe/Mg-phyllosilicates (Fe²⁺) in Noachian basement. Around delta-fan

4./5. Fe/Mg-phyllosilicates and other alteration minerals Only one (!) targeted CRISM observation, on edge of ellipse

4./5. Hydrated minerals in ellipse: Fe/Mg-phyllos, hydrated silica, kaolinite

4./5. Hydrated minerals in ellipse: Fe/Mg-phyllos, hydrated silica, kaolinite

Possible **carbonates** (Fe/Mg) in deposits overlying (or part of) the Fe/Mg-phyllosilicate bearing basement

6. Early Amazonian lava flow unit: dated igneous unit, stratigraphically on top, in continuing erosion

dated igneous unit, stratigraphically on top, in continuing erosion

Crater counts on area preserved from erosion (within a depression): model age of ~2.6 Ga

→ sample from this unit would allow calibration of model ages

dated igneous unit, stratigraphically on top, in continuing erosion

Summary: Oxia Planum History

Oxia Planum Highlights

- 1. Noachian basement (4 Ga), layered (sedimentary or igneous) and altered
- 2. Fluvial valleys and channels on Noachian basement
- 3. Delta-fan likely IN/eH (3.8-3.6 Ga), synchronous with fluvial features
- 4. Fe/Mg-phyllosilicates (ferrous iron: Fe2+) in late noachian unit.
- 5. Other alteration minerals include Al-phyllosilicates in delta-fan, hydrated silica on edge of igneous unit, possible carbonates with Fe/Mg-clays.
- 6. Early Amazonian lava flow unit (~ 2.6 Ga): igneous unit with crater count and precise age.
- 7. Continuing erosion during Amazonian: renewing of surface outcrops and renewing of potential biosignatures.
- 8. Impact craters forming natural cross-sections, also secondaries from large nearby craters.

Oxia Planum 'rubric'

Landing Site Factor	Mars 2020 Mission and Decadal Priority Science Factors Environmental Setting for Type 1A & 1B Samples: Aqueous Type 2 Context: Martian																							
	Biosignature Preservation and Taphonomy of Organics							Geochemical Environments indicated by Mineral Assemblages									Sam	ples:	History Sampled, Timing Constraints					
	Deltaic or Lacustrine (perennial)	Lacustrine (evaporitic)	Hydrothermal (<100°C) surface	Hydrothermal (<100°C) subsurface	Pedogenic	Fluvia/Alluvial	No diagenetic overprinting	Recent exposure	Crustal phyllosilicates	Sedimentary clays	Al days in stratigraphy	Carbonate units	Chloride sediments	Sulfate sediments	Acid sulfate units	Silica deposits	Ferric Ox,/Ferrous clays	Igneous unit (e.g, lava flow, pyroclastic, intrusive)	2nd Igneous unit	Pre- or Early-Noachian Megabreccia	Oldest stratigraphic constraint	Youngest stratigraphic constraint	Stratigrapy of units well- defined	Dateable surface, volcanic (unmodified crater SFD)
Oxia Planum	•		?	Į.	~	•	?	•		•	~	~				•	•	•	~	T	mN	еA	•	•